Multi-Label Learning Using Mathematical Programming
نویسندگان
چکیده
منابع مشابه
Multi-instance multi-label learning
In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the Miml...
متن کاملReverse Multi-Label Learning
Multi-label classification is the task of predicting potentially multiple labels for a given instance. This is common in several applications such as image annotation, document classification and gene function prediction. In this paper we present a formulation for this problem based on reverse prediction: we predict sets of instances given the labels. By viewing the problem from this perspectiv...
متن کاملMulti-Label Manifold Learning
This paper gives an attempt to explore the manifold in the label space for multi-label learning. Traditional label space is logical, where no manifold exists. In order to study the label manifold, the label space should be extended to a Euclidean space. However, the label manifold is not explicitly available from the training examples. Fortunately, according to the smoothness assumption that th...
متن کاملPrivileged Multi-label Learning
This paper presents privileged multi-label learning (PrML) to explore and exploit the relationship between labels in multi-label learning problems. We suggest that for each individual label, it cannot only be implicitly connected with other labels via the low-rank constraint over label predictors, but also its performance on examples can receive the explicit comments from other labels together ...
متن کاملSubmodular Multi-Label Learning
In this paper we present an algorithm to learn a multi-label classifier which attempts at directly optimising the F -score. The key novelty of our formulation is that we explicitly allow for assortative (submodular) pairwise label interactions, i.e., we can leverage the co-ocurrence of pairs of labels in order to improve the quality of prediction. Prediction in this model consists of minimising...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2015
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2014edl8139